We investigate the relations between local α-times integrated semigroups and (α + 1)-times integrated Cauchy problems, and then the relations between global α-times integrated semigroups and regularized semigroups.

For natural numbers k and n, where 2 ≤ k ≤ n, the vertices of a graph are labeled using the elements of the k-fold Cartesian product Iₙ × Iₙ × ... × Iₙ. Two particular graph constructions will be given and the graphs so constructed are called generalized matrix graphs. Properties of generalized matrix graphs are determined and their application to completely independent critical cliques is investigated. It is shown that there exists a vertex critical graph which admits a family of k completely independent...

We introduce the notion of a local n-times integrated C-semigroup, which unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study its relations to the C-wellposedness of the (n + 1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local n-times integrated C-semigroups is given.

Download Results (CSV)